

地盤解析ソフトウェアPLAXISの斜面安定解析事例紹介

JIPテクノサイエフス 株式会社

- PLAXISの概要
- ・PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

- PLAXISの概要
- ・PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

PLAXISの概要

- PLAXISとは・・・
 - 有限要素法(FEM)ならびに極限平衡法(LEM)による地盤解析ソフトウェア
 - 開発元 : 株式会社ベントレー・システムズ(米国)

PLAXIS 2Dの概要

- PLAXIS 2Dとは・・・
 - 2次元地盤解析ソフトウェア

斜面安定解析(FEM)

動的解析

PLAXIS Monopile Designerの概要

- PLAXIS Monopile Designerとは・・・
 - モノパイル基礎の最適化設計ツール
 - PISA Methodに基づく1次元解析
 - PLAXIS 3Dと連動して解析モデルを自動作成
 - 非線形地盤バネを自動設定

[1] SIG Workshop: Geotechnical Analysis – August 2020, Design of XXL Monopiles for Offshore Wind Turbines in Homogeneous and Layered Soils, Bentley Systems
[2] Byrne, B. et al. (2017). PISA: New Design Methods for Offshore Wind Turbine Monopiles. 8th International Conference for Offshore Site Investigation and Geotechnics, London, UK.

• PLAXISの概要

- PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

PLAXISによる斜面安定解析(その1)

- せん断強度低減法¹⁾の概要
 - 斜面の強度定数(c⁺:粘着力と φ⁺:摩擦角)を徐々に低減していく

 $\tau_f = c' + \sigma' \tan \phi'$

→c 'とq 'に関わる係数Fを大きくしていく

- 斜面全体が破壊した時点で
 全体安全率を定義する。
- この安全率はFOS(Factor of Safety)と
 呼ばれる

^{1) (}公社)地盤工学会:弾塑性有限要素法がわかる、地盤技術者のためのFEMシリーズ②

PLAXISによる斜面安定解析(その2)

PLAXISのせん断強度低減法

- 計算タイプで安全率解析を選択

Na	ime	Value
□ 一般		
	ID	Phase_8
	開始フェーズ	Phase_4 🔻
	計算タイプ	安全率解析
	荷重タイプ	塑性解析
	M _{sf}	安全率解析
	間隙水圧計算タイプ	動的解析
	Thermal calculation type	Dynamic with consolidation
	開始ステップ	169
	終了ステップ	218
	設計アプローチ	(None) 🔻

どの施工段階にも追加可能
 切土時、掘削時、圧密終了時・・・・

せん断強度低減法

PLAXISによる斜面安定解析(その3)

・様々な出力方法で、斜面すべりを可視化

- ・ 均質な単純斜面
 - 傾斜した地層構造
 - 層①と層③の間にせん断強度が 小さい層②がはさまれている

Layer	<i>ø</i> ′(°)	c' (kPa)	γ (kN/m ³)
1	12	29.4	18.82
2	5	9.8	18.82
3	40	294.0	18.82

Bentley[•]

2) 蔡飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

• PLAXIS 2Dによるモデル化

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価 – 極限平衡法と弾塑性FEMの比較,地すべり, Vol. 39, No. 4, 2003.

・臨界すべり面の比較

文献

PLAXIS 2D

2) 蔡飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

- 薄い弱面を持つ不均質斜面
 - 水平成層斜面
 - 材料特性は右表の通り

Layer	ø ′(°)	c'(kPa)	γ (kN/m ³)
1	29	49.00	20.38
2	30	0.00	17.64
3	20	7.84	20.38
4	30	0.00	17.64

Bentley[•]

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価 – 極限平衡法と弾塑性FEMの比較,地すべり, Vol. 39, No. 4, 2003.

・PLAXIS 2Dによるモデル化

2) 蔡飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

・臨界すべり面の比較

文献

PLAXIS 2D

2) 蔡飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

•表層破壊を対象としたモデル

- 材料特性は次の通り

			, ,	1m 1m		2.4m
Layer	<i>ø</i> ′(°)	c'(kPa)	γ (kN/m ³)	⋖ 	The Length of Pipe-A, Pip and Pipe-C is 3.5m.	e-B, Shallow
浅層	27	8.83	17.66			
深層	27	24.53	17.66	Sone Sone	1	
- 飽和 安全	度の違 家を比す	いによる 応)	Pipe-A Pipe-B •	E Pipe-A E Pipe-B	
		~		Pipe-C		P2 Impe

28

Frontal view

2) 蔡飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

2.4m |

P1

 l_c

Impervious boundary

7.6m

Deep layer

Impervious boundary

P3

1

1s

Bentley[•]

 $h_s=10\mathrm{m}$

P2

22m

解析事例(その3)2) 10m 7.6m 2.4m PLAXIS 2Dによるモデル化 - 材料モデルに不飽和特性を考慮 - 境界条件 ①:浅層 10m 右端: 鉛直ローラー 2:深層 下端:固定 - 水理境界条件 • 右端 : 不透水 2.4m 19.6m • 下端 : 不透水 22m ①:浅層 2:深層 - 飽和度 : 初期飽和度による設定 ➤ X

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価 – 極限平衡法と弾塑性FEMの比較,地すべり, Vol. 39, No. 4, 2003.

Bentley

→ 飽和度(間隙水圧)の上昇により安全率が低下

解析事例(その4)

・PLAXIS 3Dによる斜面安定解析事例

- PLAXISの概要
- ・PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

極限平衡法の概要3)

PLAXIS LEの概要

- •2次元版
 - PLAXIS 2D LE

PLAXIS LEの特長

•計算速度が早い

- PLAXISのせん断強度低減法と比較

• MPA(Multi Plane Analysis)機能による 3次元すべり面の評価

– PLAXIS 3D LE

・地盤パラメータの不確かさ
 – PLAXIS 2D LE

Bentley

・PLAXIS LEによるモデル化	۰ ا
および臨界すべり面の比較	

2) 蔡 飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

Layer

2

3

φ'(°)

12

5

40

Bentley[•]

 γ (kN/m³)

18.82

18.82

18.82

c'(kPa)

29.4

9.8

294.0

PLAXIS LEによるモデル化 および臨界すべり面の比較

Bentley[•]

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価 – 極限平衡法と弾塑性FEMの比較,地すべり, Vol. 39, No. 4, 2003.

解析事例(その2, PLAXIS 2D LEの操作画面)²⁾

解析事例(その3、PLAXIS 3D LEによるMulti Plane Analysis)4)

30

4) Bentley Systems: PLAXIS LE Help Manual, 2021.

• PLAXISの概要

JIPテクノサイエンス株式会社 解析ソフトウェアQ&Aサポートサイト

ホーム 過去の問い合わせ 新規問い合わせ 新規問い合わせ投稿 タイトル ソフト PLAXIS 2D Ver. CE.V20.03 カテゴリ 環境設定 エラー・警告 お名前 操作方法 コンサルティング 購入保守 ライセンス更新・認証関連 その他

- PLAXIS 2Dによる2次元掘削解析事例
- PLAXIS 3Dによる3次元掘削解析事例
- サポートサービスのご案内

ソフトウェアサポートサービス

- ・受託解析担当者が対応
- •開発元と連携し対応
- 解析ソフトウェアQ&Aサポートサイト にて対応
 - Webフォームにて問合せ
 - ユーザ様ごとの専用ページ
 - 過去の問合せ内容を検索
 - ソフトウェアの最新情報、FAQを提供

JIPテクノサイエフス 株式会社 解析ソフトウェアQ&Aサポートサイト

		ホーム	過去の問い合わせ	新規問い合わせ
≥ 新規問い合わせ投稿				
タイトル				
אכע	PLAXIS	S 2D Ver. CE.V	20.03	
カテゴリ	環境設定	È ,整生		
お名前	ーン 操作方法 コンサル	告ロ 去 レティング		
	購入保 ライセン ライセン	守 ンス更新・認証関連		~
	その他			

https://www.jts-femsupport.jp/

解析コンサルティングサービス

データ作成コンサルティング

- 内容:解析データの作成
 - ・解析条件の設定
 - 材料モデルの選定
 - ・解析モデルの作成
- 成果品 : 解析データ、解析条件書

PLAXIS[®] 3D

CONNECT Edition

- ・受託解析コンサルティング
 - 内容:解析データの作成+解析実行+結果のまとめ
 - 成果品 :解析データ、解析条件書、結果まとめ資料

弊社HPによる情報提供(日本語)

- 製品・サービス
 構造解析
 - 地盤

34 **HP**

構造解析 地盤			
近接施	エ、斜面崩壊、陰雨浸透流など地盤を対象と	としたFEM解析に実績のあるPLAXISを紹介し	/# 7 .
PLAXIS 2D 2次元地盤解析ソフトウェア 弊品	と PLAXIS 3D 3次元地盤解析ソフトウェア WM	PLAXIS Monopile Designer モノバイル基礎の最適化設計ツール	DIANA 汎用線形 & 非線形構造解析システム
	情報処理サービス	情報処理サービス	
TDAPⅢ/FDAPⅢ 土木・建築向け汎用3次元動的解析 プログラム	構造解析/FEM解析サービ ス 複雑な構造の局部的な発生応力肥 提、新形式の構築などの設計支援の ためのFEM解析サービス	耐震解析受託サービス 道路橋を始めとする土木構造全般に わたる耐震解析・設計支援受託サー ビス (第級処理	

Bentley[•]

https://www.jip-ts.co.jp/product_service/category_ground.html

開発元HPによる情報提供

35

https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/41123/plaxis Bentley