

地盤解析ソフトウェアPLAXISの斜面安定解析事例紹介

JIPテクノサイエンス 株式会社

内容

- PLAXISの概要
- PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

内容

- PLAXISの概要
- PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

PLAXISの概要

- PLAXISとは・・・
 - 有限要素法(FEM)ならびに極限平衡法(LEM)による地盤解析ソフトウェア
 - 開発元 : 株式会社ベントレー・システムズ(米国)

• 3つの製品

PLAXIS 2Dの概要

斜面安定解析(LEM)

- 2次元地盤解析ソフトウェア

凍結解析

Bentley^e

PLAXIS 3Dの概要

• PLAXIS 3Dとは・・・

掘削解析

- 3次元地盤解析ソフトウェア

斜面安定解析(LEM)

杭基礎解析

動的解析

トンネル解析 Bentley

PLAXIS Monopile Designerの概要

- PLAXIS Monopile Designerとは・・・
 - モノパイル基礎の最適化設計ツール
 - PISA Methodに基づく1次元解析
 - PLAXIS 3Dと連動して解析モデルを自動作成
 - 非線形地盤バネを自動設定

[1] SIG Workshop: Geotechnical Analysis – August 2020, Design of XXL Monopiles for Offshore Wind Turbines in Homogeneous and Layered Soils, Bentley Systems [2] Byrne, B. et al. (2017). PISA: New Design Methods for Offshore Wind Turbine Monopiles. 8th International Conference for Offshore Site Investigation and Geotechnics, London, UK.

内容

- PLAXISの概要
- PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

PLAXISによる斜面安定解析(その1)

- せん断強度低減法1)の概要
 - 斜面の強度定数(c':粘着力と φ':摩擦角)を徐々に低減していく

$$\tau_f = c' + \sigma' \tan \phi'$$

→c 'とφ 'に関わる係数Fを大きくしていく

$$\tau_{fF} = \frac{c'}{F} + \sigma' \frac{\tan \phi'}{F}$$

- 料面全体が破壊した時点で 全体安全率を定義する。
- この安全率はFOS(Factor of Safety)と呼ばれる

1) (公社)地盤工学会:弾塑性有限要素法がわかる、地盤技術者のためのFEMシリーズ②

PLAXISによる斜面安定解析(その2)

- PLAXISのせん断強度低減法
 - 計算タイプで安全率解析を選択

どの施工段階にも追加可能切土時、掘削時、圧密終了時・・・

せん断強度低減法

PLAXISによる斜面安定解析(その3)

• PLAXIS 2D

PLAXIS 3D

• 様々な出力方法で、斜面すべりを可視化

增分変形矢線図

増分変形コンター図

増分せん断ひずみコンタ一図 **Bentley**[®]

- ・ 均質な単純斜面
 - 傾斜した地層構造
 - 層①と層③の間にせん断強度が 小さい層②がはさまれている

Layer	φ'(°)	c'(kPa)	$\gamma (kN/m^3)$
1	12	29.4	18.82
2	5	9.8	18.82
3	40	294.0	18.82

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

• PLAXIS 2Dによるモデル化

2) 蔡 飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

・臨界すべり面の比較

2) 蔡 飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

- ・薄い弱面を持つ不均質斜面
 - 水平成層斜面
 - 材料特性は右表の通り

Layer	φ'(°)	c'(kPa)	$\gamma (kN/m^3)$
1	29	49.00	20.38
2	30	0.00	17.64
3	20	7.84	20.38
4	30	0.00	17.64

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

• PLAXIS 2Dによるモデル化

2) 蔡 飛·鵜飼恵三:斜面安定性の評価ー極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

・臨界すべり面の比較

2) 蔡 飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

- ・表層破壊を対象としたモデル
 - 材料特性は次の通り

Layer	φ'(°)	c'(kPa)	$\gamma (kN/m^3)$
浅層	27	8.83	17.66
深層	27	24.53	17.66

- 飽和度の違いによる 安全率を比較

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり, Vol.39, No.4, 2003.

• PLAXIS 2Dによるモデル化

- 材料モデルに不飽和特性を考慮

- 境界条件

右端 : 鉛直ローラー

• 下端 : 固定

- 水理境界条件

• 右端 : 不透水

• 下端 : 不透水

- 飽和度 : 初期飽和度による設定

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり, Vol. 39, No. 4, 2003.

10m

・飽和度の違いによる安全率

-	<u> </u>		<u> </u>	
	飽和度		斜面安全率	
	Sr		F	
	(-)		(-)	
	0.3		2.302	
	0.4		1.859	
	0.5		1.652	
	0.6		1.533	
	0.7		1.454	
	0.8		1.392	

→ 飽和度(間隙水圧)の上昇により安全率が低下

解析事例(その4)

• PLAXIS 3Dによる斜面安定解析事例

内容

- PLAXISの概要
- PLAXISによる斜面安定解析事例
- PLAXIS LEによる斜面安定解析事例
- サポートサービスのご案内

極限平衡法の概要3)

• 極限平衡法の概要

- 破壊と仮定した地すべりの形状から 極限平衡状態における土塊の滑動力と

土塊の持つ抵抗力を計算して

安全率を求める方法

PLAXIS LEの概要

- 2次元版
 - PLAXIS 2D LE

- 3次元版
 - PLAXIS 3D LE(2D LEを含む)

PLAXIS LEの特長

- 計算速度が早い
 - PLAXISのせん断強度低減法と比較
- MPA(Multi Plane Analysis)機能による 3次元すべり面の評価
 - PLAXIS 3D LE
- ・地盤パラメータの不確かさ
 - PLAXIS 2D LE

・PLAXIS LEによるモデル化 および臨界すべり面の比較

Layer	φ'(°)	c'(kPa)	$\gamma (kN/m^3)$
1	12	29.4	18.82
2	5	9.8	18.82
3	40	294.0	18.82

2) 蔡 飛·鵜飼恵三:斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

・PLAXIS LEによるモデル化 および臨界すべり面の比較

Layer	φ'(°)	c'(kPa)	$\gamma (kN/m^3)$
1	29	49.00	20.38
2	30	0.00	17.64
3	20	7.84	20.38
4	30	0.00	17.64

2) 蔡 飛·鵜飼恵三: 斜面安定性の評価-極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003.

解析事例(その2, PLAXIS 2D LEの操作画面)²⁾

2) 蔡 飛·鵜飼恵三:斜面安定性の評価ー極限平衡法と弾塑性FEMの比較,地すべり,Vol.39,No.4,2003. **Bentley**

解析事例(その3、PLAXIS 3D LEによるMulti Plane Analysis)4)

内容

- PLAXISの概要
- PLAXIS 2Dによる2次元掘削解析事例
- PLAXIS 3Dによる3次元掘削解析事例
- サポートサービスのご案内

JIPテクノサイエンス 株式会社

解析ソフトウェアQ&Aサポートサイト

ソフトウェアサポートサービス

- 受託解析担当者が対応
- 開発元と連携し対応
- 解析ソフトウェアQ&Aサポートサイト にて対応
 - Webフォームにて問合せ
 - ユーザ様ごとの専用ページ
 - 過去の問合せ内容を検索
 - ソフトウェアの最新情報、FAQを提供

JIPテクノサイエンス 株式会社

解析ソフトウェアQ&Aサポートサイト

https://www.jts-femsupport.jp/

解析コンサルティングサービス

- データ作成コンサルティング
 - 内容:解析データの作成
 - ・解析条件の設定
 - ・材料モデルの選定
 - ・解析モデルの作成
 - 成果品 :解析データ、解析条件書

- 受託解析コンサルティング
 - 内容:解析データの作成+解析実行+結果のまとめ
 - 成果品:解析データ、解析条件書、結果まとめ資料

弊社HPによる情報提供(日本語)

- ・製品・サービス
 - 構造解析
 - 地盤

https://www.jip-ts.co.jp/product_service/category_ground.html

開発元HPによる情報提供

- 内容
 - 最新情報
 - マニュアル
 - 例題
 - 検証資料

https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/41123/plaxis

Bentleu