Subloading t_{ij} model の概略

Subloading tij model^{1),2),3),4)}の原点は、1974年の空間滑動面(Spatially Mobilized Plane; SMP)⁵⁾の概念に遡り(も っと遡れば、村山先生(1964 年)の滑動面まで戻る)、その後、拡張した空間滑動面(SMP*)のの考え方に発展 させることで、3次元応力下における地盤材料のせん断挙動を統一的に表現できることを示した. 1984年の t_{ii} の概念 $^{\eta}$ は,このSMP*の考え方を一般化したものであり,通常の弾塑性モデルでは応力 σ_{ii} と正八面体面(\cot 面)に基づく応力パラメータ(p, q)を用いてモデル化するところを, SMP に着目した修正応力 t_iと応力パラ メーター(t_N, t_S)を使って定式化するだけで、一般的な3次元応力経路下の土の挙動を唯一的に表現できると いうものである. また, 密度・拘束応力の影響(過圧密特性)は, 橋口先生の下負荷面(Subloading surface)の

考え方を導入して考慮している. 自然堆積土等に見られる構造効果は、下負 荷面に加えて上負荷面を考える浅岡先生らのモデル化を参考に、ボンディン グ効果を導入することで下負荷面だけを使って表現している. クリープ等の 時間効果特性は、既成の粘塑性理論を使わず、周知の2次圧密係数と正規圧 密線がひずみ速度により平行に移動するという実験事実だけに基づいて定式 化している. ほとんどのモデルで考慮されていないひずみ増分方向の応力経 路依存性についても、材料パラメータを増やすことなく説明している.

図-1のプロットは,正規圧密粘土の三軸圧縮(中間主応力が最小主応力に 等しい; $\sigma_2 = \sigma_3$)および伸張(中間主応力が最大主応力に等しい; $\sigma_1 = \sigma_2$)条件 下のせん断試験の実測値を示しているが、応力パラメータとして(p,q)を用い る Cam clay type のモデルではこのような圧縮と伸張の差を説明できない. -方,図中の曲線は、t_{ij}モデルによる解析結果を示すが、圧縮・伸張条件下の ^{&(%)} 差異を説明できることが判る. 図-2(a)は、相異なる3主応力(σ₁>σ₂>σ₃) 図-1 正規圧密粘土の三軸圧縮および伸張 下のせん断試験から得られる正八面体面上のひずみ増分方向の実測値を示す.

ここに、 $\theta=0^{\circ}$ は三軸圧縮($\sigma_2=\sigma_3$)を、 $\theta=60^{\circ}$ は三軸伸張($\sigma_1 = \sigma_2$)条件を表す. Cam clay type のモデルでは、応力状態に依らずひずみ増分方 向は必然的に半径方向になり,相異なる3主応 力(0°< θ< 60°)下の実測値に見られる半径方向 からのズレを説明できない. 図-2(b)は, t_{ii} モ デルによる解析結果を示すが、実測される方向 のズレをよく表現している. 通常モデルの材料 パラメータは、三軸圧縮条件下で決められるが、 実地盤の応力状態は、三軸圧縮から三軸伸張ま

で様々である.したがって、信頼性のある地盤の変形解析には、中間主応力 の影響の考慮は欠かせない.

図-3は、過圧密比を変えた粘土の平均主応力一定試験結果(プロット)とそ の計算曲線を示すが、モデルは、密度(過圧密比)の違いによる変形・強度・ ダイレイタンシー特性の違いを適切に表現している.

図-4は、自然堆積粘土(構造化した粘土)の(a)等方圧縮試験および(b)初期 応力の異なる非排水せん断の有効応力経路と応力ひずみ関係の計算曲線を示 している. (b) 図の結果は、(a) 図の〇印を初期状態として非排水せん断して いる. 自然堆積粘土の典型的な圧縮特性と初期状態による変形・強度挙動の 違いを表現している.なお、図中の(AF)はひずみ増分方向の応力経路依存性 を考慮しない結果で、(AF+IC)は考慮した結果である.

図-5(a)は,正規圧密粘土の種々応力経路下(平均主応力一定,最大主応力 &(%) 一定、最小主応力一定および伸張試験結果を応力比~ひずみ増分比関係で整 理したものである.多くのモデルでは、試験の種類に拘わらずこの関係は同 じになることを前提に定式化されるが、実測値は特に応力比の大きくない所

ほど傾向を持って応 力経路の影響を受け ている. ひずみ増分 方向の応力経路依存 性を考慮した (b) 図の解析結果は実測 値の違いをよく表現 できる.

Pio V 0.6

図-6 は、粘土の (a) ひずみ速度を変 えた非排水せん断試験(応 力~ひずみ関係)および (b) 非排水クリープ試験 (クリープ曲線)の解析結果 を示す. アイソタックを含 めたひずみ速度効果および 応力レベルの違いによるク リープ曲線の違いも表現し ている.

表-1は、これらの解析に用いた材料パ ラメータを示す. Cam clay model と共通 のパラメータに密度を考慮するために a を、ボンディングを考慮するために*a*oと b を,時間効果特性を考慮するために2 次圧密係数2。を追加するだけである.ひ ずみ増分方向の応力経路依存性を考慮す るための新たな材料パラメータは必要な い.ここでは、粘性土の結果を示したが、 モデルは砂質土についても適用可能であ

 $\begin{array}{l} p_0 = 98Pa \; (AF + IC) \\ p_0 = 98Pa \; (AF) \\ p_0 = 1400Pa \; (AF + IC) \\ p_0 = 1400Pa \; (AF) \end{array}$

800

600

400

20

 $p_0=98Pa (AF+IC)$ $p_0=98Pa (AF)$

 $p_0=1400Pa (AF)$ $p_0=1400Pa (AF+IC)$ $p_0=1400Pa (AF)$

(AF)

800

600

400

200

q (kPa)

表-1 解析で用いた材料パラメータ

る.	λ	0.104	
文献・著書	K	0.010	-
1) Nakai T. and Hinokio M.(2004): A simple elastoplastic model for normally and over	$N=e_{NC}$ at $p=98$ kPa & $a=0$ kPa	0.83	с. 1. 11). <u>Шу</u> х
consolidated soils with unified material parameters, <i>Soils and Foundations</i> , 44(2), 53, 70	$R_{CS} = (\sigma_1 / \sigma_3)_{CS(comp.)}$	3.5	- Cam clay modelと共通
 Nakai T., Shahin H.M., Kikumoto M., Kyokawa H., Zhang F. and Farias, M.M. (2011a): 	Ve	0.2	
A simple and unified one-dimensional model to describe various characteristics of soils,	β	1.5	降伏曲面の形を決める
Soils and Foundations, 51 (6), 1129-1148.	а	290	密度・拘束応力の影響
(2011b): A simple and unified three-dimensional model to describe various	<i>w</i> ₀	0.4	ボンディングの影響
characteristics of soils, Soils and Foundations, 51(6), 1149-1168.	b	23	
4) Nakai T. (2012): Constitutive Modeling of Geomaterials: Principles and Applications, (376 pages) CPC Press, Boca Paten/London/New York	λα	0.003	時間効果特性

(376 pages), CRC Press, Boca Raton/London/New York. Matsuoka H. and Nakai T. (1974): Stress-deformation and strength characteristics of soil under three-different principal stresses, Proc of 5) JSCE, 232, 59-70.

中井照夫, 松岡元(1980): 3 主応力下の土のせん断挙動に関する統一的解釈, 土木学会論文報告集, 303, 65-77. 6)

- Nakai T. and Mihara Y. (1984): A new mechanical quantity for soils and its application to elastoplastic constitutive models, Soils and 7) Foundations, 24(2), 82-94.
- 中井照夫 (2011): 地盤材料の構成モデル最前線 2. 弾塑性論の解説とカムクレイモデルの適用性, 地盤工学会誌, 講座, 8) 59(4), 47-55.
- 中井照夫(2011): 地盤材料の構成モデル最前線 7.3 主応力条件下での材料特性のモデル化, 地盤工学会誌, 講座, 59(9), 9) 66-75
- 10) 中井照夫 (2018): 巨視的および微視的観点から見た ti の概念の意義, 地盤工学会誌, 66(7). 18-21.

著書4)は Subloading ty model の解説とその応用をまとめたもので、地盤工学会で新設された最初の出版賞に選ばれている. 文献 8), 9), 10)では既往のモデルおよび Subloading ti model の要点やti の概念の意味を判りやすく解説している.